Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Prosthodont ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526464

RESUMO

PURPOSE: This study evaluated the effect of toothbrushing cycles on surface roughness (Ra), gloss (GU), and morphology of two zirconia finishing and polishing protocols. MATERIALS AND METHODS: An ultra-translucent zirconia disc was sectioned into rectangular plates (12 mm × 7 mm × 3 mm) and divided into two groups according to the polishing and finishing system used (diamond rubber abrasive/DRA or glazing/GLA). Bovine enamel (BEN) plates with the same dimensions were used as a Control. Specimens of zirconia and enamel were analyzed for Ra and GU (n = 11) and surface morphology by scanning electron microscopy (n = 3) before toothbrushing (baseline) and after 15,000 and 30,000 toothbrushing cycles. Ra and GU data were analyzed by ANOVA two-way and post-hoc Tukey's test (α = 0.05), while the surface morphology was analyzed qualitatively. RESULTS: The Ra decreased significantly after 30,000 toothbrushing cycles for DRA and GLA zirconia ceramics. DRA showed a higher GU at the baseline, after 15,000 and 30,000 toothbrushing cycles than GLA and BEN. Toothbrushing polished the zirconia, creating a smooth surface, while no changes were observed for BEN. CONCLUSIONS: The increase in toothbrushing cycles (30,000) changed the surface roughness of DRA and GLA zirconia ceramics. DRA zirconia presented the highest GU, which did not change with toothbrushing.

2.
Int Endod J ; 56(2): 289-303, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36314859

RESUMO

AIM: To avoid root canal recontamination and endodontic treatment failure, endodontic sealers with antibacterial activity could be an alternative. Silver nanoparticles have antibacterial activity and this study aimed to synthesize Ag@SiO2 nanoparticles, incorporate them into an experimental endodontic resin sealer and evaluate their influence on physicochemical and biological properties. METHODOLOGY: Ag@SiO2 nanoparticles were produced using the sol-gel process, based on the Stöber method. The particles were characterized in terms of their chemical structure by Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-Vis spectral analysis, scanning electron microscopy, and transmission electron microscopy, where the particle morphology and diameter were analysed. A dual-cured experimental endodontic resin sealer was formulated using 70 wt% UDMA, 15 wt% GDMA, and 15 wt% BisEMA. The photoinitiators were added separately in two pastes. The Ag@SiO2 nanoparticles were incorporated into the endodontic sealer at the concentrations of 2.5 wt%, 5 wt%, and 10 wt%, and a control group without nanoparticles was also formulated. The endodontic sealers were evaluated for their flow, film thickness, degree of conversion, softening in solvent, radiopacity, cytotoxicity and antibacterial activity immediately and after 9 months in water storage. RESULTS: Silver was detected in the chemical characterization of Ag@SiO2 that presented a spheric regular shape and average 683.51 nm ± 93.58 diameter. Sealers presented adequate flow and film thickness while radiopacity values were below the ones required by ISO 6876. All groups underwent softening after immersion in a solvent. The 10 wt% groups showed a higher loss of subsurface hardness (∆KHN%). No reduction in cell viability was observed. Enterococcus faecalis viability in biofilm was reduced in 10 wt% groups after 24 h and 9 months. CONCLUSION: The addition of 10 wt% Ag@SiO2 reduced E. faecalis viability at immediate and longitudinal analysis while maintaining the physicochemical properties of developed sealers.


Assuntos
Nanopartículas Metálicas , Materiais Restauradores do Canal Radicular , Materiais Restauradores do Canal Radicular/farmacologia , Materiais Restauradores do Canal Radicular/química , Prata/farmacologia , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Solventes , Teste de Materiais , Resinas Epóxi/farmacologia , Resinas Epóxi/química
3.
J Esthet Restor Dent ; 34(2): 412-422, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34569699

RESUMO

OBJECTIVE: To evaluate the influence of shades of a multilayered zirconia on light transmission, resin cement degree of conversion, and shear bond strength of resin cement. MATERIALS AND METHODS: The light transmission through opaque (OPQ) and translucent (TNS) regions of Katana UTML zirconia (Kuraray Noritake Dental) were evaluated for using a spectroradiometer (n = 5). Degree of conversion of dual-cure resin cement (Panavia V5, Kuraray Noritake Dental) was measured after light-activation through OPQ or TNS regions and direct exposure. Composition of the zirconia was analyzed with energy dispersive x-ray spectroscopy (EDS). Shear bond strength (SBS) was evaluated on the OPQ and TNS regions after 24 h and 1 year from specimen preparation (n = 15). RESULTS: The OPQ region produced higher irradiance loss (95.1%) than TNS one (92.9%), and lower degree of conversion (52.4%) than TNS (71.2%) at 24 h post-light activation. EDS analysis did not show differences on the microstructure of the OPQ and TNS regions. There were no significant differences on the SBS between zirconia regions. For both zirconia regions, a significant reduction on the SBS occurred after aging, being 31.7% for OPQ and 38% for TNS. CONCLUSION: Both OPQ and TNS regions affected the light transmission through the multilayered zirconia. The OPQ region yielded the highest light attenuation and the lowest degree of conversion of resin cement. Different regions of the zirconia did not influence the SBS. Clinical significance Although opaque and translucent regions of the multilayered zirconia reduced the light transmission from LED curing unit and the degree of conversion of resin cement, the regions did not affect the resin cement adhesion.


Assuntos
Colagem Dentária , Cimentos de Resina , Cerâmica/química , Análise do Estresse Dentário , Teste de Materiais , Cimentos de Resina/química , Propriedades de Superfície , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA